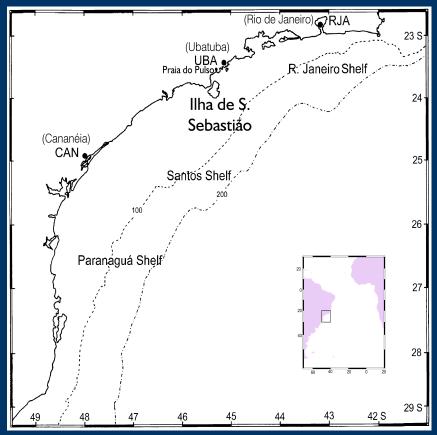
Preliminary Results of Extreme Sea Level Events from Cananeia, Brazil, (Lat 25 1'; Long 47 55)

Franco, A dos S; Mesquita, A R de ; Harari, J & França, C A de S

Instituto Oceanográfico da Universidade de São Paulo . Cidade Universitária, Butantã.São Paulo, Brasil.CEP 05508900.

Presented to VII OMAR - Arraial do Cabo, Rio de Janeiro, RJ. Brazil. Outubro de 2007.


Abstract

Sea level data from the station of Cananeia (Lat 25 1'.0; 47 55.5' Long) Brazil, were analyzed for the extreme values . Analyses were conducted bearing in mind the determinism of the astronomical tides and the probabilistic nature of the meteorological action on the sea level. Sea level predicted values of astronomical origin were produced to estimate those of meteorological origin. For that, the difference between the predicted and the actually measured sea level were calculated. The difference was taken as a residual of mainly meteorological nature and used to determine its maxima and minima extremes. Estimates of maxima and minima extremes were also made in terms of joint distribution of met and predicted sea level data. The procedures were applied to hourly annual series covering a period of 50 years of Cananeia. This allowed the analysis of the annual and decadal variability of the maxima and minima of met/ocean extreme values. Other analyses were extended, for comparison, to hourly series of sea level data, with other lengths, (series of San Francisco, Honolulu, Atlantic City, Balboa and Vigo) provided by the University of Hawaii Sea Level Center. Results indicate that the great majority of the distributions obey the Gumble, Fréchet and Weibull tails. There were some discrepancy in that tidal staff that appears to be related with the way the tides are filtered from the actual Cananeia data. Fisher test applied to the spectra identified Fourier peaks, in the range of the decadal and intradecadal periods, as compared to results of other known spectral analyses. Average level and period of returns, taken from the joint distribution functions, for the minima and maxima gave values of 20cm and 200 years for the minima and 320 cm (relative to the zero of the tidal staff) and 200

years for the maxima.

Introduction

- . The sea level data of Cananeia (Lat 25 1'.0; 47 55.5'Long), in the Southeastern coast of Brazil (Fig 1), was, in the past, analyzed by several authors for their interaction with the atmospheric and circulation parameters(Miniussi 1958, Johanessen ,1967,Leinebö, 1969,Miao, and Harari 1973), of the estuarine area, where the city is localized.
- . Later, using a longer series, analyses, related to the long term variability of sea level, firmly established the decadal and intradecadal periods, as related to the ENSO action (Mesquita,Harari & Franca,1997). Since \then, the laws regulating the use of the Beach (Brazilian Law No 4760), on the sea level limits between the land and the ocean, bearing in mind the rapid Increase of the sea level, consequent to nowadays Global warming, were object of analyses (Mesquita et all, 2001).
- . In fact, the increase of the sea level is a worring subject that is threatening the beaches of, perhaps, the entire Brazilian coast, with a rate of 40 cm/cty variation. Needless to say about the threats of the extreme values of the sea level, should the present sea level trend continues. As a follow up, this study deals with use of the early theory of Gumbell , Fréchet and Weibull as outlined in Coles (2001) and more specifically to the studies of Pugh and Vassie (1979) on the extreme values of the sea level. It only covers Cananeia, but it will be, hopefully, extended soon to the other ports of the Brazilian coast.
- . Sea level data distributed by the University of Hawaii Center from Honolulu, Atlantic City, San Francisco Balboa and Vigo were other series similarly analyzed, as complementary comparative stations for statistical analyses, in the search for decadal and interdecadal variability of extremes of sea level.

Methods

- Tables I, II and III contains : a) te histogram of the predicted sea level, based on tidal constants estimated by tidal methods (Franco &Rock, 1971), from the actual sea level of each year under analyses; b) the histogram of the residual series obtained by filtering the actual sea level data from the predicted sea level values and c) the joint probability density of the residual series and the predicted sea level.
- The sea residual series is in fact, nowadays, a mixture of various anthropic contributors to sea level variability as : **eustatic variation** (variability of the water volume); the **steric variation** (thermal variation due to global warming); the halosteric variation (**haline variation** due to melting of polar ice), **crustal variation**, (vertical and horizontal motion of the Earth's crust), d) the **astronomical variation** (glaciations) and the **meteorological** nearly randomic variability (atmospheric pressure, wind waves, precipitation....).
- From Tables I, II and III, a Table IV of the extreme values of sea levels and the extreme values of the residual series were exposed for the obtainment of the distribution patterns of extreme values and anlyses for their decadal and intradecadal variability
- Analyses of annual hourly Cananeia data (50 years) were compared with similar analyses made on San Francisco (103),Balboa (92 years), Honolulu (102), Atlantic City (98 years) and Vigo (48 years) sea level data.

TABLE I

TIDAL STATION : CANANEIA	LATITUDE: 25 1.0 S
INITIAL DAY: 1/ 1/1980	LONGITUDE: 47 56.0 W

PROBABILITY DENSITY OF THE PREDICTED TIDE

MÍNIMUM: - 89 cm	DEVIATION ST : 34.18cm
MÁXIUM: 253 cm	ASSIMETRY: 0.06
MEAN: 172.14 cm	FLATNESS :-0.77

No.	z	NM+z	p(z)	F(z)	1-F(z)	FREQ. HISTOGRAM	[
1	-80	92.14	0.00026	0.00263	0.99737	138 *	
2	-70	102.14	0.00134	0.01600	0.98400	703 ****	
3	-60	112.14	0.00315	0.04747	0.95253	1654 ******	
4	-50	122.14	0.00554	0.10283	0.89717	2910 ***********	
5	-40	132.14	0.00751	0.17793	0.82207	3947 **************	****
6	-30	142.14	0.00836	0.26149	0.73851	4392 *************	******
7	-20	152.14	0.00908	0.35228	0.64772	4772 **************	******
8	-10	162.14	0.01015	0.45382	0.54618	5337 **************	*******
9	0	172.14	0.01030	0.55681	0.44319	5413 *************	*******
10	10	182.14	0.01035	0.66031	0.33969	5440 *************	*******
11	20	192.14	0.00894	0.74975	0.25025	4701 *************	******
12	30	202.14	0.00728	0.82255	0.17745	3826 *************	***
13	40	212.14	0.00605	0.88305	0.11695	3180 *************	<
14	50	222.14	0.00526	0.93564	0.06436	2764 ***********	
15	60	232.14	0.00437	0.97930	0.02070	2295 *********	
16	70	242.14	0.00188	0.99806	0.00194	986 ****	
17	80	252.14	0.00019	1.00000	0.00000	102 *	

•Table I contains the histogram of 6 years of hourly **Predicted** sea level of Cananeia data. In this study every 1 year was used to estimate the year's constants.

•**Prediction** was based on tidal constants estimated by tidal analysis methods (Franco & Rock 1971), from the actual sea level series of each year under analyses.

Note, in Table I, the Minimum and Maximum of predicted sea level extremes, the Mean and the Standard Deviation of the actual yearly sea data, which were taken to build the Matrix of Extremes, shown in Table IV.

•No=numer of bins. Z=size fo the bins.NM+z=annual sea level pluz z.P(z)=Probabilty of occurrence. F(z)=distribution.1-F(z)=inverse distribution. Freq.=anually number of occurrences and the Plot of the Histogram

• TABLE II

۲

		$\mathbf{U}\mathbf{W}\mathbf{I}$.	-0/ CIII		DEVIAI	ION. $21.$	90 CIII
•	MÁXIN	IUM:	96 cm		ASSIME	TRY:	0.63
•	MEAN:	-0.02	cm]	FLATNES	SS : 0.	.78
•	No. z	NM+z	z p(z)	F(z)	1-F(z)	FREQ.	HISTOGR
•	1 -70	-70.02	0.00001	0.00013	0.99987	7	
•	2 -60	-60.02	0.00016	0.00177	0.99823	86	
•	3 -50	-50.02	0.00089	0.01071	0.98929	470	
•	4 -40	-40.02	0.00217	0.03238	0.96762	1139 *	
•	5 -30	-30.02	0.00696	0.10200	0.89800	3659 ***	**
•	6 -20	-20.02	0.01461	0.24806	0.75194	7677 ***	*****
•	7 -10	-10.02	0.02029	0.45097	0.54903	10665 **	*******
•	8 0	-0.02	0.01932	0.6441	0.35586	10153 **	******
•	9 10	9.98	0.01381	0.7822	0.21779	7257 ***	****
•	10 20	19.98	0.00858	.86804 (0.13196	4511 ***	***
•	11 30	29.98	0.00582	0.92626	0.07374	3060 ***	*
•	12 40	39.98	0.00387	0.96495	0.03505		
•	13 50	49.98	0.00183	0.98330	0.01670	964 *	
•	14 60	59.98			0.00774	471	
•	15 70	69.98			0.00407	193	
•	16 80	79.98			0.00150		
•	17 90	89.98			0.00008	75	
•	18 100	99.98		1.00000		4	
	10 100		0.00001	1.00000	0100000		

PROBABILITY DENSITY OF THE RESIDUAL SERIES

MÍNIMUM · -67 cm DEVIATION · 21.96 cm

-**Table II** countains the histogram of the hourly values of the **residual series** obtained by filtering the actual sea level data from the predicted sea level values for a given year (say 1955) over the 50 years actual sea level series of Cananeia.

-The **residual series** is in fact, nowadays, a mixture of various anthropic contributors to sea level variability as :1) **eustatic variation** (variability of the water volume);2) the **steric variation** (thermal variation due to global warming);3) the halosteric variation (haline variation, (melting of polar ice), 4) **crustal variation**, (vertical and horizontal motions of the Earth's crust), 5) the **astronomical variation** (glaciations) and 6) the **meteorological** nearly randomic action on sea level (atmospheric pressure, wind, waves, precipitations....)

-**Note** the minimum,maximum,mean, standard deviaton values , which were taken to build the Matrix of Extremes, shown in Table IV.

• TABLE III

• JOINT PROBABILITY DENSITY

•	No. z	p(z)	F(z)	1-F(z)	RET.PER	Prob. Density
•	1 -150	0.000000	0.000000		54.409938	1100. Density
•	2 -140	0.0000001	0.000006	0.9999994	2.960293	
•	3 -130	0.000005	0.000056	0.999944	0.339862	
•	4 -120	0.000024	0.000291	0.999709	0.065304	
•	5 -110	0.000085	0.001146	0.998854	0.016603	
•	6 -100	0.000263	0.003772	0.996228		*
•	7 -90	0.000670	0.010469	0.989531	0.001817	*
•	8 -80	0.001421	0.024677	0.975323	0.000771	***
•	9 -70	0.002545	0.050126	0.949874	0.000380	****
•	10 -60	0.003923	0.089355	0.910645	0.000213	*****
•	11 -50	0.005341	0.142761	0.857239	0.000133	****
•	12 -40	0.006633	0.209092	0.790908	0.000091	*****
•	13 -30	0.007725	0.286344	0.713656	0.000066	*****
•	14 -20	0.008578	0.372122	0.627878	0.000051	*****
•	15 -10	0.009099	0.463117	0.536883	0.000041	*****
•	16 0	0.009182	0.554935	0.445065	0.000043	*****
•	17 10	0.008803	0.642963	0.357037	0.000053	*****
•	18 20	0.008073	0.723689	0.276311	0.000069	*****
•	19 30	0.007152	0.795207	0.204793	0.000093	*****
•	20 40	0.006108	0.856286	0.143714	0.000132	*****
•	21 50	0.004917	0.905451	0.094549	0.000201	****
•	22 60	0.003623	0.941680	0.058320	0.000326	*****
•	23 70	0.002424	0.965922	0.034078	0.000558	****
•	24 80	0.001505	0.980971	0.019029	0.001000	***
•	25 90	0.000897	0.989937	0.010063	0.001891	**
•	26 100	0.000511	0.995045	0.004955	0.003839	*
•	27 110	0.000266	0.997700	0.002300	0.008273	*
•	28 120	0.000127	0.998970	0.001030	0.018470	
•	29 130	0.000059	0.999561	0.000439	0.043328	
•	30 140	0.000028	0.999839	0.000161	0.118144	
•	31 150	0.000012	0.999961	0.000039	0.482636	
•	32 160	0.000004	0.999996	0.000004	4.379270	
•	33 170	0.000000	1.000000	0.000	128.823529	

- Table III contains the **joint probability density** of the a) residual series and b) the predicted sea level sea level series for the year, say 1955, of the Cananeia sea level data. **Note** the retturn periods shown in the 6th column and the extreme **jpd** values at the **bottom of Table III**.

- From Tables I, II and III a **Table IV** of the extreme values of sea levels and the extreme values of the residual series were exposed for the obtainment of the distribution patterns of extreme values and analyses for their decadal and intradecadal variability

***** ****

**

Analyses of annual hourly Cananeia data (50 years) were compared with similar analyses made with Balboa (92 years), Honolulu (102years), San Francisco (103 years)
Atlantic City (98 years) and Vigo (48 years) sea level data.

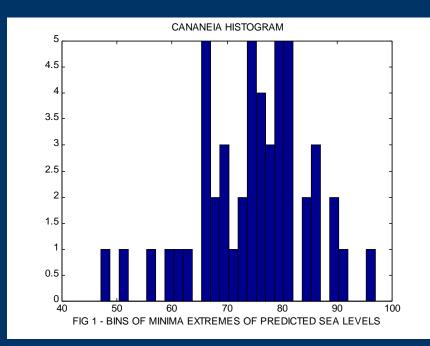
Maximum 170 cm MInimum: -150 cm

Table IV Matrix of Extreme Values of Cananeia

70 246 158.47 33.69 -51 61 -0.01 18.16 -140 140 50 92 1955 77 244 158.41 33.66 -67 00 18.48 -140 140 97 11 1957 73 252 161.51 34.10 -49 63 -0.02 18.48 -140 140 97 11 1958 84 245 162.34 33.46 -52 68 0.00 18.08 -150 150 63 29 1960 71 249 166.26 34.24 -48 00 0.01 18.08 -150 150 63 29 1962 66 260 165.59 33.91 -64 100 0.00 18.49 -150 150 61 12 1963 66 250 150 61 12 1963 63 20 1962 150 61 12 1964 140 </th <th>1st</th> <th>2d</th> <th>3d</th> <th>4th</th> <th>5th</th> <th></th> <th>7th</th> <th>8 th</th> <th>9th</th> <th>10th 11th 12th 13th</th>	1st	2d	3d	4th	5th		7th	8 th	9th	10th 11th 12th 13th
79247158.4133.66-67700.0118.49-15015013191195773252161.5134.10-4963-0.0218.48-1401409711195884245162.3433.86-52680.0019.29-130140513195075253165.3434.16-47770.0718.03-1401605053.4196070249166.2634.24-48800.0118.08-1501506329196266259165.9533.91-641000.0018.44-160180469119196366260165.5934.30-54770.0218.95-1501601785196467266164.9535.32-5363-0.0118.66-15018026673196570255162.1334.96-60950.0118.66-15018026673196668256162.5135.17-7870-0.0321.04-1701507216196947240158.2134.58-76900.0219.22-1701801457197152260159.6335.45-65900.0219.22-170150160 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
73252161.5134.10-4963 -0.02 18.48 -140 1409711195884245162.3433.86 $+52$ 680.0019.29 -130 140513195975253165.3434.16 $+47$ 770.0718.03 -140 16050.834196071249166.2634.24 $+48$ 800.0118.08 -150 15070014196170249164.6133.71 -61 79 -0.01 20.19 -150 1506329196266259165.5933.01 -54 700.0218.95 -150 1601785196467266164.9535.32 -53 63 -0.01 18.87 -150 1506112196570255162.1334.96 -60 950.0221.91 -170 170121234196868256162.5135.17 -78 70 -0.03 21.04 -170 1507216196947240158.2134.58 -76 90 0.02 19.52 -170 1801444197162253160.9834.19 -70 74 0.01 19.02 -170 150161197274248163.9634.24 -75 80 -0.01 17.46 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
84 245 162.34 33.86 -52 68 0.00 19.29 -130 140 5 13 1959 75 253 165.34 34.16 47 77 0.07 18.03 -140 160 50 83.4 1960 71 249 166.26 34.24 48 80 0.01 18.08 -150 150 63 29 1962 66 259 165.95 33.91 -64 100 0.00 18.44 -160 180 469 119 1963 66 260 165.95 33.91 -54 170 18.95 -150 160 17 75 1964 67 266 164.95 35.32 -53 63 -0.01 18.87 -150 180 26 673 1966 72 260 152.65 35.45 -68 76 0.02 1.91 -170 150 71 180										
75253165.3434.16-47770.0718.03-14016050.834196071249166.2634.24-48800.0118.08-1501506329196266260165.5533.91-641000.0018.44-160180469119196366260165.5534.30-54770.0218.95-1501601785196467266164.9535.32-5363-0.0118.87-15018026673196670255162.1334.96-60950.0118.66-15016016112196572260159.6535.45-68760.0221.91-170170121234196868256162.5135.17-7870-0.0321.04-1701507216196972240158.2134.58-76900.0720.84-19016048614197052260162.9035.4659900.0219.52-17018014547197162253160.9834.19-70740.0119.02-17015044115197274248163.9634.24-7580-0.0117.46-160160142473<										
71249166.26 34.24 -48800.01 18.08 -150 150 700 14 1961 70249164.61 33.71 -61 79 -0.01 20.19 -150 150 63 29 1962 66259 35.31 -64 100 0.00 18.44 -160 $180 469$ 119 1963 62 616.59 33.40 -54 77 0.02 18.95 -150 150 61 12 1965 70 255 162.13 34.96 -60 95 0.01 18.66 -150 180 26 673 1966 70 255 162.13 35.45 -68 76 0.02 21.91 -170 170 121 234 1968 86 256 162.51 35.17 -78 70 -0.03 21.04 -170 150 486 14 1970 72 260 162.90 35.36 -65 90 0.02 19.02 -170 150 441 15 1972 74 248 163.96 34.24 -75 80 -0.01 17.46 -160 150 102 17 1973 75 260 164.24 36.25 57 70 0.02 19.70 -160 160 414 15 1974 74 248 163.96 34.24 -75 80 -0.01 18.81 -140 <										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
66259165.9533.91-641000.0018.44-160180169119196366260165.5934.30-54770.0218.95-1501601785196467266164.9535.32-5363-0.0118.87-1501506112196570255162.1334.96-60950.0118.66-160160131464196759260159.6535.45-68760.0221.91-170170121234196868256162.5135.17-7870-0.0321.04-1701507216196947240158.2134.58-76900.0219.52-17018014547197162253160.9834.19-70740.0119.02-17015044115197274248163.9634.24-7580-0.0117.46-160160144250197462263160.4236.25-57700.0219.00-160160144197577244160.6034.30-59690.0118.81-140140178197673257169.7735.45-7270-0.0219.15-150180124473 </td <td></td>										
66260165.59 34.30 -54 77 0.02 18.95 -150 160 17 85 1964 67266 164.95 35.32 -53 63 -0.01 18.87 -150 150 61 12 1965 70255 162.13 34.96 -60 95 0.01 18.66 -150 180 26 673 1966 72 254 133.85 -67 84 0.02 21.16 -160 160 1314 44 1967 73 260 159.65 35.45 -68 70 0.02 21.91 -170 150 72 16 1969 47 240 158.21 34.58 -76 90 0.07 20.84 -190 160 486 14 1970 72 260 162.90 35.36 -65 90 0.02 19.52 -170 180 142 471 1971 260 163.96 34.24 -75 80 -0.01 17.46 -160 150 102 17 1973 74 248 163.96 34.24 -75 80 -0.01 17.46 -160 160 114 250 1974 56 160.42 36.25 57 70 0.02 19.70 -160 160 41 157 1975 72 74 160.6 34.30 -59 69 0.01 18.81 -140										
67266164.9535.32 -53 63 -0.01 18.87 -150 1506112196570255162.1334.96 -60 950.0118.66 -150 18026673196670254162.3433.85 -67 840.0220.16 -160 160131464196759260159.6535.45 -68 760.0221.91 -170 170121234196868256162.5134.58 -76 900.0720.84 -190 16048614197052260162.9035.36 -65 900.0219.52 -170 18014547197162253160.4934.24 -75 80 -0.01 17.46 -160 15010217197363250164.4135.03 -61 83 -0.02 19.70 -160 160144250197456263160.4236.25 -57 70 0.02 19.70 -160 16040164197577244160.6034.30 -59 69 0.01 18.81 -140 140178197673257169.7035.32 -58 72 0.02 17.78 -160 150102312197873257169.7035.32 -58 72										
70255162.13 34.96 -60950.01 18.66 -150 180 26 673 1966 76254 162.34 33.85 -67 84 0.02 20.16 -160 160 1314 64 1967 59260 159.65 35.45 -68760.02 21.91 -170 170 121 234 1968 68256 162.51 35.17 -7870-0.03 21.04 -170 150 72 16 1969 7240 158.21 35.36 -65900.02 19.52 -170 180 14 547 1971 62253 160.98 34.19 -70740.01 19.02 -170 150 441 15 1972 74248 163.96 34.24 -75 80 -0.01 17.46 -160 160 114 250 1974 62 250 164.41 35.03 -61 83 -0.02 19.00 -160 160 114 250 1974 52 263 160.42 35.25 57 70 0.02 19.70 -160 160 114 275 1976 77 244 160.60 34.30 -59 69 0.01 18.81 -140 140 17 8 1976 77 253 163.77 35.45 -61 97 -0.02 19.15 -150 180 1										
76 254 162.34 33.85 -67 84 0.02 20.16 -160 160 1314 64 1967 59 260 159.65 35.45 -68 76 0.02 21.91 -170 170 121 234 1968 68 256 162.51 35.17 -78 70 -0.03 21.04 -170 150 72 16 1969 47 240 158.21 34.58 -76 90 0.07 20.84 -190 160 486 14 1970 52 260 162.90 35.36 -65 90 0.02 19.52 -170 180 14 547 1971 62 253 160.98 34.19 -70 74 0.01 19.02 -170 150 441 15 1972 74 248 163.96 34.24 -75 80 -0.01 17.46 -160 150 102 17 1973 68 250 164.41 35.03 -61 83 -0.02 19.00 -160 160 144 1975 77 244 160.60 34.30 -59 69 0.01 18.81 -140 140 17 8 1977 74 253 166.19 35.45 -72 70 -0.02 19.15 -150 180 142 473 1977 74 253 166.19 35.45 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
59260159.6535.45-6876 0.02 21.91 -170 170 121 234 1968 68256162.5135.17-7870 -0.03 21.04 -170 1507216 1969 47240158.21 34.58 -7690 0.07 20.84 -190 160 486 14 1970 52260162.90 35.36 -6590 0.02 19.52 -170 18014 547 1971 62253160.98 34.19 -7074 0.01 19.02 -170 150 411 15 1972 74248163.96 34.24 -7580 -0.01 17.46 -160 160 144 250 1974 56263160.42 36.25 -57 70 0.02 19.70 -160 160 40 164 1975 77244 160.60 34.30 -59 69 0.01 18.81 -140 140 17 8 1976 77253 166.19 35.45 -27 70 -0.02 19.15 -150 180 142 473 1977 74258 160.19 35.45 -72 70 -0.02 17.78 -160 150 1297 1980 255 170.06 34.95 -54 80 -0.01 17.97 -140 150 461 1979 <td></td>										
68256 162.51 35.17 -78 70 -0.03 21.04 -170 150 72 16 1969 47240 158.21 34.58 -76 90 0.07 20.84 -190 160 486 14 1970 52260 162.90 35.36 -65 90 0.02 19.52 -170 180 14 547 1971 62253 160.98 34.19 -70 74 0.01 19.02 -170 150 441 15 1972 74248 163.96 34.24 -75 80 -0.01 17.46 -160 150 12.17974 76263 160.42 36.25 -57 70 0.02 19.70 -160 160 40 164 1975 77244 160.60 34.30 -59 69 0.01 18.81 -140 140 17 8 1976 77253 163.77 35.45 -72 70 -0.02 19.15 -150 180 142 473 1977 74253 166.19 35.45 -72 70 -0.01 18.85 -160 150 122 312 1978 75 169.70 35.32 -58 72 0.02 17.78 -160 150 350 21 1982 82255 170.06 34.95 -54 80 -0.01 1.977 -140										
47240158.2134.58 -76 900.0720.84 -190 16048614197052260162.9035.36 -65 900.0219.52 -170 18014547197162253160.9834.19 -70 740.0119.02 -170 15044115197274248163.9634.24 -75 80 -0.01 17.46 -160 160114250197456263160.4236.25 -57 700.0219.70 -160 16040164197577244160.6034.30 -59 690.0118.81 -140 140178197677253163.7735.45 -61 97 -0.02 19.15 -150 180142473197774253166.1935.45 -72 70 -0.01 18.85 -160 15012312197873257169.7035.32 -58 72 0.02 17.78 -160 1501095364197980256172.1234.77 -58 100 0.00 21.11 -150 1703227198082255170.0634.95 -54 80 -0.01 17.97 -140 1504816198185254171.7634.62 -71 77 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
52260162.9035.36-65900.0219.52-17018014547197162253160.9834.19-70740.0119.02-17015044115197274248163.9634.24-7580-0.0117.46-160160114250197456263160.4236.25-57700.0219.70-160160114250197457244160.6034.30-59690.0118.81-140140178197677253166.1935.45-1270-0.0118.85-160150122312197873257169.7035.32-58720.0217.78-1601501095364197980256172.1234.77-581000.0021.11-1501703227198082255170.0634.95-5480-0.0117.97-1401504816198185254171.7634.62-71770.0019.62-16015035021198287263176.3435.00-6372-0.0118.81-140160512198582267174.8235.21-53790.0019.35-1401605										
62 253 160.98 34.19 -70 74 0.01 19.02 -170 150 441 15 1972 74 248 163.96 34.24 -75 80 -0.01 17.46 -160 150 102 17 1973 68 250 164.41 35.03 -61 83 -0.02 19.00 -160 160 114 250 1974 56 263 160.42 36.25 -57 70 0.02 19.70 -160 160 40 164 1975 77 244 160.60 34.30 -59 69 0.01 18.81 -140 140 17 8 1976 77 253 166.19 35.45 -72 70 -0.02 19.15 -150 180 142 473 1977 74 253 166.19 35.45 -72 70 -0.01 18.85 -160 150 1095 364 1979 80 256 172.12 34.77 -58 100 0.00 21.11 -150 170 32 27 1980 82 255 170.06 34.95 -54 80 -0.01 17.97 -140 150 48 16 1981 85 254 171.76 34.62 -71 77 0.00 19.62 -160 150 350 21 1982 87 263 176.34 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
74248163.96 34.24 $.75$ 80 -0.01 17.46 -160 150 102 17 1973 68250164.4135.03 $.61$ 83 -0.02 19.00 -160 160 114 250 1974 56263160.42 36.25 $.57$ 70 0.02 19.70 -160 160 40 164 1975 77244160.60 34.30 $.59$ 69 0.01 18.81 -140 140 17 8 1976 77253166.19 35.45 $.72$ 70 -0.02 19.15 -150 180 142 473 1977 74253166.19 35.45 $.72$ 70 -0.01 18.85 -160 150 122 312 1978 73257169.70 35.32 $.58$ 72 0.02 17.78 -160 150 122 312 1978 80256 172.12 34.77 58 100 0.00 21.11 -150 170 32 27 1980 82255 170.06 34.92 -71 77 0.00 19.62 -160 150 350 21 1982 87263 176.34 35.09 -66 79 0.01 19.75 -160 160 772 380 1983 87267 175.63 35.00 -53 72 -0.01 18.81 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
68250 164.41 35.03 -61 83 -0.02 19.00 -160 160 114 250 1974 56263 160.42 36.25 -57 70 0.02 19.70 -160 160 40 164 1975 77244 160.60 34.30 -59 69 0.01 18.81 -140 140 17 8 1976 77253 163.77 35.45 -61 97 -0.02 19.15 -150 180 142 473 1977 74253 166.19 35.45 -72 70 -0.01 18.85 -160 150 122 312 1978 73257 169.70 35.32 -58 72 0.02 17.78 -160 150 1095 364 1979 80256 172.12 34.77 -58 100 0.00 21.11 -150 170 32 27 1980 82255 170.06 34.95 -54 80 -0.01 17.97 -140 150 48 16 1981 85254 171.76 34.62 -71 77 0.00 19.62 -160 150 35.02 1 983 87267 175.63 35.00 -53 72 -0.01 18.81 -140 160 5 12 1985 82267 174.82 35.21 -53 79										
56 263 160.42 36.25 $.57$ 70 0.02 19.70 -160 160 40 164 1975 77 244 160.60 34.30 $.59$ 69 0.01 18.81 -140 140 17 8 1976 77 253 163.77 35.45 -61 97 -0.02 19.15 -150 180 142 473 1977 74 253 166.19 35.45 $.72$ 70 -0.01 18.85 -160 150 12 312 1978 73 257 169.70 35.32 $.58$ 72 0.02 17.78 -160 150 120 364 1979 80 256 172.12 34.77 $.58$ 100 0.00 21.11 -150 170 32 27 1980 82 255 170.06 34.95 $.54$ 80 -0.01 17.97 -140 150 48 16 1981 85 254 171.76 34.62 $.71$ 77 0.00 19.62 -160 150 350 21 1982 87 263 176.34 35.00 -53 72 -0.01 18.81 -140 160 5 12 1985 82 267 174.82 35.21 -53 79 0.00 19.35 -140 160 5 46 1986 78 258 177.48 34.38										
77 244 160.60 34.30 -59 69 0.01 18.81 -140 140 17 8 1976 77 253 163.77 35.45 -61 97 -0.02 19.15 -150 180 142 473 1977 74 253 166.19 35.45 -72 70 -0.01 18.85 -160 150 12 312 1978 73 257 169.70 35.32 -58 72 0.02 17.78 -160 150 1095 364 1979 80 256 172.12 34.77 -58 100 0.00 21.11 -150 170 32 27 1980 82 255 170.06 34.95 -54 80 -0.01 17.97 -140 150 48 16 1981 85 254 171.76 34.62 -71 77 0.00 19.62 -160 150 350 21 1982 87 263 176.34 35.09 -66 79 0.01 18.81 -140 160 5 12 1983 87 267 175.63 35.00 -53 72 -0.01 18.81 -140 160 5 12 1985 82 267 174.82 35.21 -53 79 0.00 19.35 -140 160 5 46 1986 78 258 177.48 34.38										
77 253 163.77 35.45 -61 97 -0.02 19.15 -150 180 142 473 1977 74 253 166.19 35.45 -72 70 -0.01 18.85 -160 150 12 312 1978 73 257 169.70 35.32 -58 72 0.02 17.78 -160 150 1095 364 1979 80 256 172.12 34.77 -58 100 0.00 21.11 -150 170 32 27 1980 82 255 170.06 34.95 -54 80 -0.01 17.97 -140 150 48 16 1981 85 254 171.76 34.62 -71 77 0.00 19.62 -160 150 35.0 21 1982 87 263 176.34 35.09 -66 79 0.01 19.75 -160 160 772 380 1983 87 267 175.63 35.00 -53 72 -0.01 18.81 -140 160 5 12 1985 82 267 174.82 35.21 -53 79 0.00 19.35 -140 160 5 46 1986 78 258 177.48 34.38 -63 84 0.01 19.21 -160 150 32 6 1987 63 259 171.16 35										
74 253 166.19 35.45 -72 70 -0.01 18.85 -160 150 12 312 1978 73 257 169.70 35.32 -58 72 0.02 17.78 -160 150 1095 364 1979 80 256 172.12 34.77 -58 100 0.00 21.11 -150 170 32 27 1980 82 255 170.06 34.95 -54 80 -0.01 17.97 -140 150 48 16 1981 85 254 171.76 34.62 -71 77 0.00 19.62 -160 150 350 21 1982 87 263 176.34 35.09 -66 79 0.01 19.75 -160 160 772 380 1983 87 267 175.63 35.00 -53 72 -0.01 18.81 -140 150 10 93 1984 81 266 172.05 35.24 -54 83 -0.02 18.98 -140 160 5 12 1985 82 267 174.82 35.21 -53 79 0.00 19.35 -140 160 5 46 1986 78 258 177.48 34.38 -63 84 0.01 19.21 -160 150 32 6 1987 63 259 171.16 35.07										
73 257 169.70 35.32 -58 72 0.02 17.78 -160 150 1095 364 1979 80 256 172.12 34.77 -58 100 0.00 21.11 -150 170 32 27 1980 82 255 170.06 34.95 -54 80 -0.01 17.97 -140 150 48 16 1981 85 254 171.76 34.62 -71 77 0.00 19.62 -160 150 350 21 1982 87 263 176.34 35.09 -66 79 0.01 19.75 -160 160 772 380 1983 87 267 175.63 35.00 -53 72 -0.01 18.81 -140 150 10 93 1984 81 266 172.05 35.24 -54 83 -0.02 18.98 -140 160 5 46 1986 78 258 177.48 34.38 -63 84 0.01 19.21 -160 150 32 6 1987 63 259 171.16 35.31 -63 95 -0.01 20.94 -170 170 398 127 1989 79 266 172.94 34.88 -65 80 0.02 19.10 -160 160 243 43 1990 75 256 172.80 34										
80256172.12 34.77 -58 100 0.00 21.11 -150 170 32 27 1980 82255170.06 34.95 -54 80 -0.01 17.97 -140 150 48 16 1981 85254171.76 34.62 -71 77 0.00 19.62 -160 150 350 21 1982 87263 176.34 35.09 -66 79 0.01 19.75 -160 160 772 380 1983 87267 175.63 35.00 -53 72 -0.01 18.81 -140 150 10 93 1984 81266 172.05 35.24 -54 83 -0.02 18.98 -140 160 5 12 1985 82267 174.82 35.21 -53 79 0.00 19.35 -140 160 5 46 1986 78258 177.48 34.38 -63 84 0.01 19.21 -160 150 32 6 1987 63259 171.16 35.31 -63 95 -0.01 20.94 -170 170 398 127 1989 79 266 172.94 34.88 -65 80 0.02 19.10 -160 160 243 43 1990 75 258 169.58 35.06 -63 75 0.02 <										
82 255 170.06 34.95 -54 80 -0.01 17.97 -140 150 48 16 1981 85 254 171.76 34.62 -71 77 0.00 19.62 -160 150 350 21 1982 87 263 176.34 35.09 -66 79 0.01 19.75 -160 160 772 380 1983 87 267 175.63 35.00 -53 72 -0.01 18.81 -140 150 10 93 1984 81 266 172.05 35.24 -54 83 -0.02 18.98 -140 160 5 12 1985 82 267 174.82 35.21 -53 79 0.00 19.35 -140 160 5 46 1986 78 258 177.48 34.38 -63 84 0.01 19.21 -160 150 32 6 1987 63 259 171.16 35.31 -63 95 -0.01 20.94 -170 170 292 101 1988 66 263 169.71 35.07 -45 90 0.07 18.63 -150 170 398 127 1989 79 266 172.94 34.88 -65 80 0.02 19.10 -160 160 243 43 1990 75 256 172.80 34.81										
85254171.76 34.62 -7177 0.00 19.62 -160 150 350 21 1982 87263 176.34 35.09 -6679 0.01 19.75 -160 160 772 380 1983 87267 175.63 35.00 -53 72 -0.01 18.81 -140 150 10 93 1984 81266 172.05 35.24 -54 83 -0.02 18.98 -140 160 5 12 1985 82267 174.82 35.21 -53 79 0.00 19.35 -140 160 5 46 1986 78258 177.48 34.38 -63 84 0.01 19.21 -160 150 32 6 1987 63259 171.16 35.31 -63 95 -0.01 20.94 -170 170 292 101 1988 66263 169.71 35.07 -45 90 0.07 18.63 -150 170 398 127 1989 79266 172.94 34.88 -65 80 0.02 19.10 -160 160 243 43 1990 75258 169.58 35.06 -63 75 0.02 19.58 -150 150 64 1992 90262 175.65 34.74 -60 68 -0.01 20.41 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
87 263 176.34 35.09 -66 79 0.01 19.75 -160 160 772 380 1983 87 267 175.63 35.00 -53 72 -0.01 18.81 -140 150 10 93 1984 81 266 172.05 35.24 -54 83 -0.02 18.98 -140 160 5 12 1985 82 267 174.82 35.21 -53 79 0.00 19.35 -140 160 5 46 1986 78 258 177.48 34.38 -63 84 0.01 19.21 -160 150 32 6 1987 63 259 171.16 35.31 -63 95 -0.01 20.94 -170 170 292 101 1988 66 263 169.71 35.07 -45 90 0.07 18.63 -150 170 398 127 1989 79 266 172.94 34.88 -65 80 0.02 19.10 -160 160 243 43 1990 75 258 169.58 35.06 -63 75 0.02 19.58 -150 150 64 1992 90 262 175.65 34.74 -60 68 -0.01 20.41 -150 150 46 1992 90 262 175.33 35.50 -56 82										
87 267 175.63 35.00 -53 72 -0.01 18.81 -140 150 10 93 1984 81 266 172.05 35.24 -54 83 -0.02 18.98 -140 160 5 12 1985 82 267 174.82 35.21 -53 79 0.00 19.35 -140 160 5 46 1986 78 258 177.48 34.38 -63 84 0.01 19.21 -160 150 32 6 1987 63 259 171.16 35.31 -63 95 -0.01 20.94 -170 170 292 101 1988 66 263 169.71 35.07 -45 90 0.07 18.63 -150 170 398 127 1989 79 266 172.94 34.88 -65 80 0.02 19.10 -160 160 243 43 1990 75 258 169.58 35.06 -63 75 0.02 19.58 -150 150 64 1992 90 262 175.65 34.74 -60 68 -0.01 19.08 -150 150 644 343 1993 86 269 173.34 35.05 -59 77 0.06 18.79 -150 170 37 51 1994 78 262 172.33 35.68 -53										
81 266 172.05 35.24 -54 83 -0.02 18.98 -140 160 5 12 1985 82 267 174.82 35.21 -53 79 0.00 19.35 -140 160 5 46 1986 78 258 177.48 34.38 -63 84 0.01 19.21 -160 150 32 6 1987 63 259 171.16 35.31 -63 95 -0.01 20.94 -170 170 292 101 1988 66 263 169.71 35.07 -45 90 0.07 18.63 -150 170 398 127 1989 79 266 172.94 34.88 -65 80 0.02 19.10 -160 160 243 43 1990 75 258 169.58 35.06 -63 75 0.02 19.58 -150 150 6 49 1991 79 256 172.80 34.81 -58 86 -0.01 20.41 -150 160 93 46 1992 90 262 175.65 34.74 -60 68 -0.01 19.08 -150 150 644 343 1993 86 269 173.34 35.05 -59 77 0.06 18.79 -150 170 37 51 1994 78 262 172.33 35.68 <										
82267 174.82 35.21 -53 79 0.00 19.35 -140 160 5 46 1986 78258 177.48 34.38 -63 84 0.01 19.21 -160 150 32 6 1987 63259 171.16 35.31 -63 95 -0.01 20.94 -170 170 292 101 1988 66263 169.71 35.07 -45 90 0.07 18.63 -150 170 398 127 1989 79 266 172.94 34.88 -65 80 0.02 19.10 -160 160 243 43 1990 75 258 169.58 35.06 -63 75 0.02 19.58 -150 150 6 49 1991 79 256 172.80 34.81 -58 86 -0.01 20.41 -150 160 93 46 1992 90 262 175.65 34.74 -60 68 -0.01 19.08 -150 150 604 343 1993 86 269 173.34 35.05 -59 77 0.06 18.79 -150 170 37 51 1994 78 262 172.33 35.50 -56 82 0.03 18.50 -155 171 120 240 1995 75 254 171.23 35.68 -53 98 <td></td>										
78 258 177.48 34.38 -63 84 0.01 19.21 -160 150 32 6 1987 63 259 171.16 35.31 -63 95 -0.01 20.94 -170 170 292 101 1988 66 263 169.71 35.07 -45 90 0.07 18.63 -150 170 398 127 1989 79 266 172.94 34.88 -65 80 0.02 19.10 -160 160 243 43 1990 75 258 169.58 35.06 -63 75 0.02 19.58 -150 150 6 49 1991 79 256 172.80 34.81 -58 86 -0.01 20.41 -150 160 93 46 1992 90 262 175.65 34.74 -60 68 -0.01 19.08 -150 150 604 343 1993 86 269 173.34 35.05 -59 77 0.06 18.79 -150 170 37 51 1994 78 262 172.30 35.50 -56 82 0.03 18.50 -155 171 120 240 1995 75 254 171.23 35.68 -53 98 -0.02 18.13 -150 170 215 14 1996 78 256 172.33 35										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$										
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$										
79 256 172.80 34.81 -58 86 -0.01 20.41 -150 160 93 46 1992 90 262 175.65 34.74 -60 68 -0.01 19.08 -150 150 604 343 1993 86 269 173.34 35.05 -59 77 0.06 18.79 -150 170 37 51 1994 78 262 172.30 35.50 -56 82 0.03 18.50 -155 171 120 240 1995 75 254 171.23 35.68 -53 98 -0.02 18.13 -150 170 215 14 1996 78 256 172.33 35.12 -67 77 -0.01 19.12 -160 150 31 151 1997 81 265 177.01 35.06 -73 70 0.01 18.01 -170 150 292 224 1998 80 263 176.36 35.04 -92										
90262175.6534.74-6068-0.0119.08-150150604343199386269173.3435.05-59770.0618.79-1501703751199478262172.3035.50-56820.0318.50-155171120240199575254171.2335.68-5398-0.0218.13-15017021514199678256172.3335.12-6777-0.0119.12-16015031151199781265177.0135.06-73700.0118.01-170150292224199880263176.3635.04-922160.0021.09-160155300100199990260175.7835.17-5979-0.0218.30-150150625112000										
86 269 173.34 35.05 -59 77 0.06 18.79 -150 170 37 51 1994 78 262 172.30 35.50 -56 82 0.03 18.50 -155 171 120 240 1995 75 254 171.23 35.68 -53 98 -0.02 18.13 -150 170 215 14 1996 78 256 172.33 35.12 -67 77 -0.01 19.12 -160 150 31 151 1997 81 265 177.01 35.06 -73 70 0.01 18.01 -170 150 292 224 1998 80 263 176.36 35.04 -92 216 0.00 21.09 -160 155 300 100 1999 90 260 175.78 35.17 -59 79 -0.02 18.30 -150 150 625 <td></td>										
78 262 172.30 35.50 -56 82 0.03 18.50 -155 171 120 240 1995 75 254 171.23 35.68 -53 98 -0.02 18.13 -150 170 215 14 1996 78 256 172.33 35.12 -67 77 -0.01 19.12 -160 150 31 151 1997 81 265 177.01 35.06 -73 70 0.01 18.01 -170 150 292 224 1998 80 263 176.36 35.04 -92 216 0.00 21.09 -160 155 300 100 1999 90 260 175.78 35.17 -59 79 -0.02 18.30 -150 150 625 11 2000										
75254171.2335.68-5398-0.0218.13-15017021514199678256172.3335.12-6777-0.0119.12-16015031151199781265177.0135.06-73700.0118.01-170150292224199880263176.3635.04-922160.0021.09-160155300100199990260175.7835.17-5979-0.0218.30-150150625112000										
78 256 172.33 35.12 -67 77 -0.01 19.12 -160 150 31 151 1997 81 265 177.01 35.06 -73 70 0.01 18.01 -170 150 292 224 1998 80 263 176.36 35.04 -92 216 0.00 21.09 -160 155 300 100 1999 90 260 175.78 35.17 -59 79 -0.02 18.30 -150 150 625 11 2000										
81 265 177.01 35.06 -73 70 0.01 18.01 -170 150 292 224 1998 80 263 176.36 35.04 -92 216 0.00 21.09 -160 155 300 100 1999 90 260 175.78 35.17 -59 79 -0.02 18.30 -150 150 625 11 2000										
80 263 176.36 35.04 -92 216 0.00 21.09 -160 155 300 100 1999 90 260 175.78 35.17 -59 79 -0.02 18.30 -150 150 625 11 2000										
90 260 175.78 35.17 -59 79 -0.02 18.30 -150 150 625 11 2000										
-92 271 170 69 34 81 -81 90 0.02 18 76 -170 170 136 110 2002										
97 272 184.98 35.22 -87 144 0.00 21.11 -165 155 200 50 2003	12									
82 265 179.89 35.02 -61 63 -0.01 19.86 -160 140 1501 62 2004					-61	63	-0.01	19.86	-160	140 1501 62 2004

Table IV was built with extreme values of Cananeia given in Tables I, II and III. Each line of the Table reffers to the year shown in the last column.

-In the first, second, third and fourth columns are shown, respectively, the annual values of minima and maxima, (relative of the zero of the rule) of predicted sea level extremes, the mean and the standard deviation of the actual sea level data, taken from the Table I.


-In the fifith, sixth, seventh and eith columns are the annual values of the minima, maxima, mean of the extremes and the standard deviation of the residual series, taken from Table II.

-In the nineth, tenth, eleventh and twelveth columns are shown the annual minima and maxima extremes relative to the mean of the joint probability of sea level, the period of return of the minima and the period of return of the maxima etremes of the residual series, taken from Table III.

Note that although calculated from one year of data the annual minima and maxima values of the return period vary very much from year to year.

Histograms of Extreme Values

- From Table IV the histograms of each column were estimated as shown in the Figure for 50 years of Cananeia hourly data.
- Similar Tables were prepared for the Balboa, Honolulu, Atlantic City, Vigo and San Franciso values of extremes.
- The shape of the tails of similar histograms, as the one seen in the figure, of all ports studied are summarized in Table V.

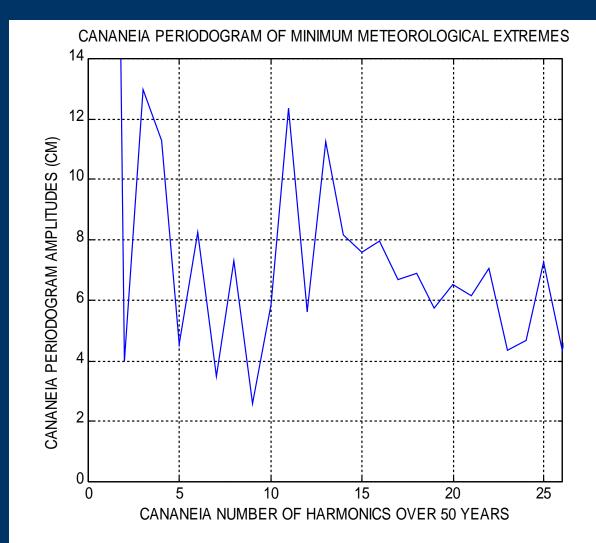


Table V - Histograms Tails

Port	1st	2d	3d	4th	5th	6th	7th	8th	9th	10th
Balboa	right	left	right	mix	left	right	mix	right	left	right
Cananeia	left	left	right	mix	left	right	mix	right	left	right
S Francisco	right	right	right	mix	left	right	mix	right	left	right
Honolulu	left	left	left	mix	left	right	mix	right	left	right
AtlanCity	left	left	right	mix	left	right	mix	right	left	right
Vigo	right	right	right	mix	left	right	mix	right	righ	t left

- Table V shows the **visual** aspect of the histograms, regarding their shape, built with data of the Matrix of Extremes for the port of Cananeia, in comparizon with Balboa (Panama), S Francisco (USA), Honolulu(USA), Atlantic City (USA) and Vigo (Spain) data.
- •
- The minima and maxima extremes (1st and 2d), of predicted sea level seem not well repeated by all ports as well as the actual mean sea level (3d) of all places, in which San Francisco is to the right..
- The 4th colum shows that the std deviation of sea level of all ports have a mixed sort of distribution in all ports.
- While the 5th 6th, 7th and 8th columns, for the minima, maxima, mean and std deviation of extremes of residuals (say meteorological) of all ports are visually very much alike.
- Similar result is obtained for the joint distribution of predicted sea level and meteorology minima and maxima extremes of all ports (9th and 10th),but Vigo, including the port of Cananeia.
- These results are preliminary as they depend on how the tidal constants are calculated.

Series of Extreme Values of all columns of Table VI, for Cananeia, and of all columns of silimar tables of all other ports were spectrally analised for the determination of the most prohiminents periods of variability as in the Figure.

Table VI – Cananeia Harmonics that passed the Test of Fisher

No Har	Period	Amplit	Test	Fisher	
1 0000			0.0.100	0.10.50	
1.0000	50.0000	8.3262	0.3482	0.1259	
2.0000	25.0000	5.1740	0.2063	0.1294	
6.0000	8.3333	4.6240	0.2076	0.1332	First
3.0000	16.6667	3.5430	0.1538	0.1373	
15.000	3.3333	3.5249	0.1799	0.1416	
1.0000	50.0000	5.2521	0.2340	0.1259	
3.000	16.6667		0.2502	0.1294	2d
4.0000	12.5000	3.1066	0.1425	0.1294	2u
4.0000	12.3000	5.1000	0.1423	0.1332	
1.0000	50.0000	6.9555	0.5439	0.1259	
3.0000	16.6667	3.4762	0.2979	0.1294	
5.0000	10.0000	2.6546	0.2474	0.1332	
4.0000	12.5000	1.8126	0.1533	0.1373	3d
10.0000	5.0000	1.7627	0.1712	0.1416	
6.0000	8.3333	1.5651	0.1628	0.1463	
8.0000	6.2500	1.3919	0.1538	0.1514	
1.0000	50.0000	0.4135	0.2368	0.1259	4th
2.0000	25.0000	0.3580	0.2325	0.1294	
2.0000	25.0000	6.7126	0.2331	0.1259	
10.0000	5.0000	6.1230	0.2530	0.1294	5th
3.0000	16.6667	5.0955	0.2345	0.1332	
12.0000	4.1667	5.0469	0.3005	0.1373	
14.0000	3.5714	12.9254	0.1582	0.1259	6th
13.0000	3.8462	0.0169	0.269	0.1259	7th
0	0	0	0	0	8th
0	0	0	0	0	9th

Table VI countains the results of application of the periodogram test of Fisher (1929) to the 1st, 2d, 3d,,columns of Table IV.The series of annual data of each column were Fourier transformed and the peak amplitudes tested.

-No Har- is the periodogram harmonic number. – Period- is the periodicity of the harmonic (years). – Amplit- is the amplitude of the harmonic (cm). – Test- is the estimated harmonic Fisher value (g*).-Fisher- is the theoretical limiting value (g) of Fisher statistics. - If (g*) is greater than (g) the harmonic passes the test.

Fourier transforms of extreme values of actual sea level series and others similar to Table IV from ports of Honolulu, San Francisco, Atlantic City,Vigo and Balboa were also submmited to the test of Fisher and , contrary to what is seen in Table VI for the port of Cananeia, they all exhibited joint predicted sea level/ meteorological periodicities (9th and 10th blocks) that passed the test.

Table VII – Balboa Harmonics that passed the Test of Fisher

•	No Har	Period	Amplit	Test	Fisher	
•	20.0000	4.4000	10.5976	0.3877	0.0844	
•	1.0000	88.0000	6.7906	0.2599	0.0859	
•	5.0000	17.6000	4.1854	0.1334	0.0873	
•	2.0000	44.0000	3.7151	0.1213	0.0889	1st
•	40.0000	2.2000	3.6654	0.1344	0.0905	
•	3.0000	29.3333	3.0857	0.1100	0.0921	
•	21.0000	4.1905	2.8678	0.1068	0.0939	
•	16.0000	5.5000	2.5881	0.0974	0.0957	
•						
•	20.0000	4.4000	12.4504	0.5811	0.0844	
•	19.0000	4.6316	4.1277	0.1525	0.0859	
•	5.0000	17.6000	3.7293	0.1469	0.0873	
•	7.0000	12.5714	3.1925	0.1262	0.0889	
•	6.0000	14.6667	3.0281	0.1299	0.0905	2d
•	18.0000	4.8889	2.9951	0.1460	0.0921	
•	11.0000		2.3968	0.1095	0.0939	
•	28.0000	3.1429	2.3655	0.1198	0.0957	
•	40.0000	2.2000	2.3040	0.1291	0.0976	
•	32.0000	2.7500	2.0374	0.1159	0.0995	
•	36.0000	2.4444	1.8129	0.1038	0.1016	
•	1.0000	88.0000	4.0046	0.3258	0.0844	
•	2.0000	44.0000	2.0240	0.1234	0.0859	3d
•	7.0000	12.5714	1.8265	0.1324	0.0889	
•	5.0000	17.6000	3.9947	0.6809	0.0844	
•	4.0000	22.0000	1.6677	0.3719	0.0859	
•	2.0000	44.0000	1.1600	0.2865	0.0873	
•	1.0000	88.0000	0.9571	0.2733	0.0889	
•	6.0000	14.6667	0.7659	0.2409	0.0905	4.1
•	3.0000	29.3333	0.6540	0.2314	0.0921	4th
•			11 1	1 1	1 1 1	
•	Note that s					
	Intradecal		-			~ ~
•	Cananeia.	Period.	ears. Am	nt. cm. N	o Har ovei	92

•	Continued	1				
•	No Har	Period	Amplit	. Test	Fishe	r
•						
•	7.0000	12.5714	0.6296	0.2789	0.0939	4th
•	9.0000	9.7778	0.4220	0.1739	0.0957	
•	22.0000	4.0000	0.3216	0.1222	0.0976	
•	8.0000	11.0000	0.2867	0.1106	0.0995	
•	23.0000	3.8261	0.2817	0.1201	0.1016	
•	18.0000	4.8889	0.2657	0.1215	0.1038	
•	19.0000	4.6316	0.2621	0.1345	0.1061	
•	16.0000	5.5000	0.2440	0.1347	0.1084	
•	6.0000	14.6667	7.9415	0.0885	0.0844	5th
•						
•	23.0000	3.8261	10.2030	0.1535	0.0844	6th
•	1.0000	88.0000	9.9623	0.1729	0.0859	
•	42.0000	2.0952	7.1724	0.1083	0.0873	
	aa	2.02(1	0.05(0	0.0070	0.0044	
•	23.0000	3.8261	0.0568	0.8079	0.0844	7.1
•	21.0000	4.1905	0.0090	0.1066	0.0859	7th
•	24.0000	3.6667	0.0079	0.0912	0.0873	
•	1.0000	88.0000	0.4495	0.1324	0.0844	
•	4.0000	22.0000	0.4495	0.1324 0.1260		8th
•	4.0000	4.6316	0.4084	0.1260	0.0859 0.0873	διn
•	2.0000	4.0310	0.3203	0.0920		
•	2.0000	44.0000	0.3230	0.0997	0.0889	
•	20.0000	4.4000	10.8397	0.1010	0.0844	
•	28.0000	3.1429	9.9631	0.0949	0.0859	
•	3.0000	29.3333	9.1019	0.0875	0.0873	9th
•	6.0000	14.6667	8.9623	0.0930	0.0889	<i>)</i> th
•	5.0000	17.6000	8.4792	0.0917	0.0905	
	5.0000	17.0000	0.1772	0.0717	0.0705	
•	1.0000	88.0000	10.4333	0.1273	0.0844	
•	23.0000	3.8261	10.1527	0.1381	0.0859	10th
•	20.0000	4.4000	7.8058	0.0947	0.0873	
•	Note that					

Intradecal energy as Balboa is a longer series

•

Cananeia . Period: Years. Ampit: cm. No Har over ! years

Discussion

- The Data
- The original sea level data of all ports were interpolated by tidal prediction for the missing year of data, in order to produce the Matrix of Extremes from where all the present results were obtained.
- The results are very much dependent on how long is the series from where the tidal constants are calculated. They can be calculated by taken the entire set of years of hourly values of sea level, or for each year of the set. As the series from different ports have different time spans, it was adopted, as a general rule for the comparison, to reduce the computations of the tidal constants to one year basis.
- Other adopted rule was to work with undetrended original series of sea level from all ports, as they all experience a general increase, with different trends, along the years.
- •
- The Histograms
- The statistical studies of extremes have identified three classes of extreme values distributions known as Gumble, Fréchet and Weibull distributions. The remarkable feature of this result is that the three types of extreme value distributions are the only possible limits, regardless of the distribution of the original data (Coles, 2001). The three types of limits that occorred have distinct forms of tail behaviour depending upon the original data distribution.
- To take this into consideration Table IV was prepared, where one can see that there is an almost similar behaviour of all meteorological series, with a few exceptions. The distribution of minima met extremes (5th column) have all a Fréchet type of tail, while the distribution of maxima extremes (6th column) have a Weibull type. This is also evident from the joint met/sea distributions (9th and 10th columns). The meteorological distributions of all ports for the standard deviations (7th column) have, in general, a sort of mixed profile, although not repeated in all histograms. That does not seem to be attributable to a Gumble type of distribution or Fréchet or Weibull.

Discussion (continued)

The Fisher Tests

The test of Fisher only accepts the amplitudes of the periodogram that are best for the Fourier fit to the data. It does not acertain that there is a physical cause of any particular spectral peak which passed the test. The physical causes for the periodicities must be sought by comparison with the results of other studies that have already interpreted them as, for example, in Mesquita, A. R. de., Harari, J. & Franca, C. A. de S. (1997) for Cananeia.

• The Level and Retturn Period of Cananeia

The joint distribution Pugh and Vassie (1979), of predicted sea level and meteorological extremes were calculated for every year. For each year they, sea level and meteorology, separately, originated extreme values of the sea level, which were well within the limits of variation of the sea data , while the joint sea and level return periods were very much variable and higher than expected.

• For that reason a sort of mean of the return period associated with a mean extreme level were calculated from data of columns 11 and 12 of Table IV, giving: 1) 320 cm for the maxima extreme and 200 years for the correspondent return period and 2) 20 cm, relative to the rero of the rule, and 200 years, respectively, for the minima extremes.

Conclusions

- Comparative analyses of extremes from 50 years of Cananeia sea level station and data from stations of Atlantic City (USA) (92), Balboa (Panama),(92), Honolulu (USA) (99), San Francisco (USA) (103) and Vigo (Spain)(48) showed similar Fréchet and Wiebull histograms for the joint sea level/ met distributions and also for the meteorological extremes. There were some difficulty to visually determine the kind of distribution for the standard deviations of the sea level and the std of meteorological distribution, that may be related with the determination of the tidal constants.
- The predicted minima and maxima sea level extremes, the actual sea level extremes of Cananeia and of all ports have variable Fréchet and Weibull distribution, which also seem to be related by the way the tidal constants were determined. This is noteceable in the std of the sea level extremes distribution, which in general is difficult to be certain if it is uniform or other.
- The joint sea/ met distribution of Cananeia extremes (maxima and minima), did not show spectral amplitudes which passed the Fisher text, as well as, the std of the mean meteorological extremes. However the extremes of the other tidal stations have periods that passed the test of Fisher, indicating the occurrence of decadal periodicities in the joint sea/met series of extremes.
- The estimated return periods and the corresponding level of return of Cananeia have average values of 200 years and 20 cm for the minima extreme and 320 cm, relative to the zero of the staff and 200 years for the maxima. The actual mean sea level is about 180cm.

References

- Coles, S (2001). An Introduction to Statistical Modeling of Extreme Values. Springer-Verlag. London Limited. 208p.
- •
- Fisher, R, A. (1929). Tests of Significance in Harmonic Analysis. Proc. Roy. Soc., ser. A. 125:54-59.
- •
- Franco, A. dos Santos & Rock, N.J.(1971). The fast Fourier Transform and its Application to Tidal Oscillations. Bolm Inst. oceanogr., S. Paulo, 20(1):455-199.
- •
- Johannessen, O. M. (1967). Preliminary Studies on the Mean daily Oscillation of Sea Level and Atmospheric Pressure at Cananeia and Santos on the southern Part of the Brazilian coast.Contrções Inst. Oceanogr. Univ. S. Paulo, sér. Ocean. fis. N 9 :1-2
- •
- Leinebö, R. (1969). Study of Coastal water on the Brazilian Shelf at Latitude 25 S. Contrções Inst. Oceanogr. Univ. S. Paulo, sér. Ocean. fís. N 11 :1-14.
- •
- Miyao, S. Y. & Harari, J. 1989 "Estudo preliminar da maré e das correntes de maré da região estuarina de Cananéia (25° S 48° W)"

– Boletim do Instituto Oceanográfico da USP, nº 37 (2), p. 107 - 123.

- Miniussi,I.C. (1958).Nivel de reducao de sondagens e variação anual do Nível Médio Mensal do Porto de Cananeia .Contrções Inst. Oceanogr. S. Paulo. Univ. S. Paulo. sér. Ocean, fís. N 2 ,7 p.
- •
- Mesquita, A. R. de., Harari, J. & Franca, C. A. de S. (1997). Global Change in the South Atlantic : Decadal andInterdecadal Scale. Anals. Braz. Acad. scien. V(66),
- •
- Mesquita, A. R. de, Franca, C. A. de S., Blitizkow, D., Trabanco, L. L., Quandt, M. & Correa, M. A. (2001). Nivel do Mar de 1831 em Barra do Una. Afro America GLOSS News . Vol(5), 1:2-8 see . www.mares.io.usp.br Icon AAGN. Subm. JCR (2006).

•

• Pugh, D. & Vassie, I.(1979). Extreme Sea Levels from Tide Gauge & Surge Probability . Proc 16th Coastal Engineering Computation. Hamburg , 1978, Vol 1 pp 911-930.